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ABSTRACT

This work degins with a study of individual decision-making

under uncertainty, 2 problem which we formulate as

ey} Maximige f(x,B) subject to g (x,8) >0, i=1, ... ,m

I

where X 1is & decision n-vector, B 1is a b-vector of exogenous
variables and/parameters of the decision model, f is an objective
function to be maximized, and the 8; are constraint functions
which det e the set of feasible decisions. The source of uncer-
tainoty is B, which is kxnown only to lie in a given set B. We

also congider the case in which a probability distribution over B
is gi oh.

Séveral methods for circumventing uncertainty in the constraints
are briefly reviewed, and several decision criteria for ciréumventing
uncertainty in the objective function are discussed. Particular
attention is devoted to the demonstration of certain relationships
between these criteria. It is concluded that vector maximum reformu-
lations o play & prominent role in dealing with uncertainty in
such decision prcblems.

A vector maximmm prcblem is of the form

"y_azimize" fl(g), cee fr(f)

(2)
subject to gi(g) 2o, i=d 4w

The quotation marke signify that it is desired to find all efficient

2




decisions, i.e., all decision vectors satisfying the constraints
such that it is impossible to achieve an increase in any one objective
function without violating the constraints or decreasing at least

\‘l one of the other objective functions. In Chapter II we discuss two

‘I:vb methods for transforming a vector maximum problem into an equivalent
Gt Atirriocwadd

parametric programmirg probl Existing computational methods for

the latter problems are briefly surveyed
L/ sl S AR e -] __/-)
The principal contribution of this work is presented in Chapter III:
V " \_—_———-’/
@¢ & class of algorithms for solving parametric concave programming

. problms@f the form
>

e ——
S

Maximize of, (x) + (1-@)f,(x)
(3) =
subject to gi(_x) >0, SEs e

for each fixed value of @ in the closed interval ([0,1)], where

£, (i = 1,2) are strictly concave functions, g; (i=1,...,m)

are concave functions, and certain additional regularity assumptions
are made. Under these assumptions it is shown that (2) (with r = 2)
and (3) are equivalent in the sense that x° is efficient in (2)

if and only if Eo solves (3) for some value of  in the unit
interval. The present class of algorithms is not "simplex-like"

or "gradient” in nature, ut proceeds by maintaining a solution of
the Kuhn-Tucker Conditions as a varies by small increments (under
our assumptions these conditions are neée'ssary and eufficient for

an optimal solutiom of (3)). The main algorithm given herein displays
quadretic convergence at each incregent of a. A simple modification
for handling linear equality constraints is indicated.

vi
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'ﬁw ‘éx;oblen gf also subsumes the standard (non-parametric) concave

; programming problem when a feasible solution is known. Thus the

present algorithms provide a deformation method of concave programming

parazetric problems than (3), moreover, the present gfr

ey

o prees G S

The firmal chapter presentsﬁl;umerical example4which illustrates

pertirent to semsitivity analysis applicatioii§.

the solution of a decision problem under uncertainty by means of the

tgc‘:::iques discuss the preceding chapters.
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Notation

x = (x,-.05%x) is a decision vector in E" (n-dimensional Euclidean
space), and is under the control of the decision-maker
B= (al,. - ,Bb) is an uncertain vector in E° representing exogenous .

variables and model parameters, and is not under the control

of. the decisioq—maker

f‘(E,g) is a real-valued criterion function which is to be maximized;
if there is no dependence on B, we write f(x); if there
are several criterion functions, we write f(x) for

(5@, T ()

&(x,p) = (gl(_x,g),- . ,gm(_x,g)) is a real vector-valued constraint

function; if there is no dependence on B, we write. g(x)

(z € Z: z. has property P} denotes the set of all elements z

in the set Z which have property 'P; when Z is omitted,

" it is implicitly understood to be the pertinent universal

set

X 1is a subset of En consisting of the feasible decisions; often

X represents (x: g(x) > 0]}

2 (in Chapter I) is a subset of Eb' which is known to contain the

"true realization" of B

22> (> o signifies %, > (3 0 (i=1,...,n)

xi




X >0 signifies x>0 but x#£0

Ty de'notes'a prpbabilify distribution over B

C C(C) D signifies that the set C is a (proper) subset of D

} A = 0,2 1/2
1!1_(59) = {5: [ 2 (xi-xi) ] < r} , an open neighborhood of x°
_ i=1 [

of radius r

F{x) denotes the maximum G-fractile criterion (see problem (L.5)

of Chapter I)

A(M) denotes the aspiration 'rcriterion with aspiration level M

(see problem (4.6) of Chapter I)

[a,b)g[teEl: a<t<b}

(Rx) denotes the parametric programming problem considered in

Chapter III; the parameter Q may vary in this notation
(there is no relation between this usage of a and that

|
[ ' of Chapter I)
|
|

2(x50) € ar (x) + (1-0)£,(x)

V. £(x) € (%—:-_) seees a;(‘f)) ; the gradient of f(x)

n
S denotes 2 subset of constraint indices; S (M, where M is

the set of the first m positive integers

u = (ul,. = ,um) denotes the dual variabies associated with the
Knhn-'hzqker conditions 0

xii




(XT-1),...,(X7-4) are, collectively, one version of the Kuhn-

Tucker conditions associated with (Pa) .

(=S)a is a more complete notation for the equations (KT-1) and

(K7-2); S and a may vary in this notation

(x*(a), u*(a)) is the optimal solution and dual variables of (Fa)

as functions of «
x" (@), Es(u)) is a solution of (=S)a as a function of «
V§f(§) denotes the matrix of second partial derivatives (i.e., the
hessian) of f£(x)

< zv >~ x° means that the (infinite) sequence 51,52, o6 d ,Ev, o v

(¢}
converges to x

C-D denotes the points in the set C which are not in the set D

P (i eM: u*if(a) > 0}, the set of active constraints at o3 «
may vary in this notation
=S (5 em: g;(x*(a)) = 0}, the set of binding constraints at

x*(a); a may vary in this notation

ag‘.}(j =1,...,H) are the points of change of Ax or of Bx in the

unit interval; a' is a generic term for a point of change

a'+ is an arbitrary point strictly between two points of change

e

Ia* = [a'-Z, a'+Z], where £ is defined immediately above Theorem 4.2,

Chapter III

xiii




CHAPTER I
On the Relevance of the Vector Maximum

Problem to Decision-Making Under Uncertainty

1. Introduction
This chapter addresses a problem of individual decision-making

under uncertainty of the form -

(1) Meximize f(x,B) subject to g(x,B) 20,
x

where X = (xl,...,xn) is the de.cision vector, B = (Bl""’Bb) is
& vector of exogencus variables and parameters of the model, f is
the objective (or criterion or payoff) function to be maximized,
and g = (gl,'.. 3 ,gm) is a vector-valued constraint mnctioﬁ which
determines the set of feasible decisions. We assume that the functions
f amd g are known, bﬁt that B is known only to l;'.e in a given
set Bg Eb, where Eb is b-dimensional Euclidean spﬁce. Often
we shall make ‘thé additional assumption that £ may be regarded as
a random variable with a known probability distribution over B.
A choice of x must be made before P is found out, if, indeed,
it ever is revealed to the decision-maker. Throughout this chapter,
no experimentation is permitted in order to reduce uncertainty about
8.

If B were known exactly, then (1) would be a well-defined
problem {providing that the desired maximum exists, of course).

But we have assumed that P 1is uncertain, and so (1) is not well-defined.




There are two distinct aspects of the difficulties arising from
uncertainty in B: the set of feasible decisions is uncertain, and
the objective function is uncertain. Maximization cannot be performed
@til the constraints and objective function are reformulated so as

to be independent of B. We shall discuss a variety of such reformu-
lations, and it will be seen that quite frequently vector maximum

reformulations play a prominent role.

The Vector Maximum Problem

A vector maximum problem arises whenever there is more than one
objective function to be extremized. Consider the problem

(2) "Maximize" f(x) ,
xeX

where f(x) = (fl(z),. : "fr(-)f)) is a vector-valued objecti ve fanction
(each component of f represents an objective, usually non-additive
with the others, which the decision-maker wants to maximize), and

X £ is a set of feasible decisions. In the fortunate event that
each component of the objective function reaches its maximum simul-
tanecusly, as in Figure 1, then (2) is said to have a perfect solution.
In general, however, an improvement of one objective beyond a certain
point can only be obtained at the expense of worsening another.

Suppose that for a feasible decision _)50 there exists no other feasible

éecision g‘L such thaty _f(fl) 22(50). Then 50 is termed an

y In this work we adopt the convention that X 2 0 signifies
x, >0 (@=:2%% 5. sm); X >0 signifies X, >0 (i =1,...,n) and
x; >0 for at least one i, and x >0 signifies x;, >0 (= LS




efficient solutions of (2). The quotation marks in (2) signify

that it is desired to find all efficient solutions. When they are
ali found, the vector maximum problem (2) has been solved.

When f has onlyltwo or three components, we envision determining
the entire set of efficient solutions and presenting the corresponding
outcomes in graphical form to the decision-maker, who would then
subjectively determine a trade-off between conflicting objectives
and thus make the final selection of a decision. Figures 1 and 2
:llustrate the graph of attainable outcomes for two hypothetical cases
involving two objective functions. The efficient outcomes are denoted

ty the heavy line and dot.

£,(x) fE,l:El

4 A

attainable |

s \\@

» f,(x) g £, (x)

Figure 1 Figure 2

In many applied decision problems, even in the absence of uncer-
tainty, there are several objective functions which naturally present

themselves to the decision-maker. In such situations, the relevance

gf The notion of an efficient solution is essentially the same as
the motion cf "undominated” or "admissible” decisions in decision
theory, and the notion of "Pareto optimality" in game theory (see
Luce and Raiffa, 1357, p. 287 and p. 118).




of the vector maximum problem is obvious, and need not be emphasized
fﬁrther( _What we do wish to emphasize is that in the presence of
uncertainty even a single-criterion-function problem such as (l)?
ﬁhich we would accept as the "correct" formulation if B were known
exactly, tends to explode into vector maximum reformulations when

one attempts to turn it into a well-defined problem.

Plan of Discussicn

Because uncertainiy in the constraints is fundamentally different
from uncertainty in the objective function of (1), we split our dis-
cussion into two parts: in section 2 we consider ways of reformulating
the constraints so as to be independent of B, and in section 3 we
consider ways of reformulating the objective function solas to be
independent of B (this is usually known as invoking a decision
criterion). These two steps must be accomplished in order to convert
(1) into a weil-defined prcblem. The conversion usually can be
acccemplished in several ways, reflecting varicus compromises which
may be made 1o uncertainty in £, realism in the final model, and
computational considerations.

In section 2, three reformulations of the constraints will be
discussed: permanent feasibility, the penalty function reformulation,
and probzpiiistic comstraints. The first two do not require a proba-
bility distribution cver B, while the last does. The last two
reformulations sometimes lead to a vector maximum problem.

In section 3 we ccnsider several decision criteria, and some

reliztions beiween them are noted. We suggest that a given decision

O




problem should be attacked by several decision criteria rather than

by only one. The result is, of course, a vector maximum problem. Two
examples are presented which demonstrate the usefulness of considering

two cr’teria simultaneously. The second example is a one-periocd

inventory model, and an argument is given for deviating from the

now classical solution.

2. Treating Uncertainty in the Feasibility Constraints

This section is essentially a ;eview of some of the existing
ways of circumventing uncertainty in the constraints, and is included
mainly for completeness. Mixtures and.variations of these ba_sic

approaches can be improvised to cover most particular applications.

The Permanent Feasibility Reformulation ‘

To be absolutely sure of choosing a feasible decision, choice
must be limited to those values of x which are feasible for all
8 € B. That is, restrict attention to the seté/ m {x: g(x,p) >0}
(see Madansky, 1962 and 1963). e

An obviocus difficulty with this reformulation is that when B
is "large,” the permanently feasible set is apt to be "small," and even
m2y be empty. When the maximization operation 1is performed subsequently,

there may be little opportunity to achieve a satisfactorily high value

of the cbjective function.

-54/ We adopt the notation of using braces to denote sets in this work.
The symbol § denctes the empty set.



The Penalty Function Reformulation

The above reformulation does not admit the possibility of ever
choosing a decilsion whlch is infeasible. What does it mean to say that
a decision X' is "infeasible" when, say, B' obtains? Mathematically,
we have g(x',B') gg, which means that either (x',B') is physically
impossible, or is physically.pOSSibl.e but "undesirable" (we are dis-
tinguishing between those constraints which are dictated by the physical
limitations of the system and those which are imposed at the model-
maker's dis.cretion). In the second case, it may be possible to take
additional action in order to make the outcome less "undesirable,"
or at least to pay a price for being "infeasible.” Denote this "price"
by 2(3',@'”), not necessarily measured in dollars. Note that P is,
in general, a vector-valued function, reflectipg the fact that vio-
lations of different constraints may imply different dimensions of
disutility. For example, consider an investment portfolio optimization
medel which has as its objective the maximization of portfolio worth
at the e_nd of a specified horizon. One constraint may specify a desired
level of diversification (e.g., a maximum of 30% of the portfolio in
defense industries), and another constraint may specify a lower bound
on the average Standard and Poor's gquality rating of.the securities.
Violation of each of these constraints would be measured in different
units from the unit of meés*aranent of the objective function.

The penalty function reformulation of (l) results, in general,

in 2 vector maximum problem of the form

(3 "Maximize” £(x,8), -p(x,B) .
x




An important special case arises when p has but one component,

and this component is additive with f. This reformulation then

beconesl—‘/

(3.1) Maximize [f(x,8) - p(x,B)] .
X

All of the two-stage "stochastic programming" problems (see, e.g.,
Dantzig, 1955, Madansky, 1962, and Mangasarian and Rosen, 1964) can
be thought of as penalty function reformulations. The basic idea of
thesze problems is to append a second stage to the original problem

to "correct for" possible infeasibility of the original decision; p
then represents the minimum cost of correcting for an infeasible X,
as affected by the then known actual value of B. The usual example
of a situation in which the two-period formulation may be appropriate
is the case of a manufacturer who is committed to produce to satisfy
an unknown demand B for his perishable products. If all of the
demand is not satisfied, then he purchases the difference on the open

market.

Probabilistic Constraints

Assume that B may be regarded as a random variable, and that

its probability distribution over B is known.

1N

5 Note that (1) can be written equivalently in this form if P is
takxen to be arbitrarily large for infeasible combinations of Xx and
B, and equal to zero for feasible combinations. For example,

Maximi [ Inf [£(x) 811 .
e (x) + & e, (x,p




The notion of permanent feasibility may be relaxed if one requires (’
merely that each or all of the constraints must hold with at least
some prescribed probability. For example, consider

Maximize f(x,B)
% .

subject to 'Prob[gi(_zf,_ﬁ) >0]> a, doem 1) B b mW;

where 0 <a, <1 (1 = 1,...,m). Charnes and Cooper (1959, 1963)
r=fer to this as "chance-constrained" programming. Note that when
each a, is nearly one, this reformulation approaches the permanent
feasibility reformulation.

Another probabilistic constraint reformulation is

Maximize f(x,8)
x

subject to E[g(x,p)] >0,

where "E" denotes expectation.

As an alternative to the formulations above, one may incorporate
scme or all of the probabilistic constraints in the objective function,
€.8->

"Maximize" f(x,8) , Problg,(x,8) > 0]
X

subject to Prob[gi(z,g) >0] > a; , = 12 S MR

The efficient solutions to the resulting vector maximum problem show
clearly the available trade-offs between the original objective function

and assurance that various of the constraints will be met.

O




3. Treating Uncertainj:y in lthe @chtive Function

In section 2 we discussed several ways of reformuia.ting the
éonstrai’pté so as tl.o be independént of g Herg we assume that this
has been accomplished, and discuss several ways of .refomulating'.the
objéctivg'mncti.olﬁs. so as to bé independent of B. For the sake of
simplicity of discussion, wé shall 1.:rea.t the case of but a single
objective .ﬁu.lction, so tha.'f; the problem. to be considered in this section
can be rewritten as

(¥ Maximize f(x,B) .
xeX

As before, P 1is known to lie in a given set B, and' X 1is the
set of feasible decisions.

Since it is necessary to choose a decision X Dbefore B is
revealed (if it is ever revealed), f(x,£) must be replaced by a
known funetion of x alone. That is, (4) must be reformulated as

(%.0) Maximize T(x)
xeX

~J
where 'f" is 2 known function to be chosen. The choice of f in a

given situation is equivalent to what is customarily known as the choice

of a decision criterion. If a decision is an optimal solution of

(%.0), it is said to satisfy the decision criterion which produces ’f\"(z)
from £(x,8).

After first discussing two alternative restatements of (4), we
shall briefly summarize the admissibility criterion, the maxmin payoff

criterion, the estimate criterion, and the Principle of Insufficient




Reaéon. The difficulty of finding a single ideal decision criterion
is well—known;.and SO we také the pOSition that it may be more useful
to select two.criterié, each with distinct merits of its own, and
recast (%) as a vector maximum problem (each component of the vector-
valued objective function is derived from one decision criterion).

An example is presente; to illustrate the possible advantages of such
a procedufe.

We then shall assume that a probability distribution over B is
given. The concept of stochastic admissibility is introduced as a
generalization of the ordinary concept of admiééibility. Next we
examine three decision criteria for reducing (4) to a well-defined
problem with heavy emphasis on a geometric motivation for each in
order to gain insight and understanding. These are the maximum
expected payoff criterion, the maximum o-fractile criterion (maximize
the a-fractile of the distribution of f(ﬂ,g) under the probability
distribution of B, for some preselected @), and an aspiration
criterion (maximize the probability of achieving at least some pre-
scribed level of payoff). Several propositions are proved which
relate these criteria to each other and to the previously mentioned
criteria which do not involve probabilities. Finally, a one-period
inventory example is presented to illustrate the ideas of this section
and to support the suggestion that several criteria, rather than a
single one, should be seiected to embody the conflicting aims of the
decision-maker. The resulting vector maximum problem should then be

solved in place of (4).

10
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Alternative Problem Statements

=)

In some situations the objective function of (4) can be written

as f(x,p) = F,(x) + Fp(x,8). If F, and F, each represent a

quantity which the decision-maker wants to maximize, one may reformu-
late (4) as a two-component vector maximum problem

"Maximize" F,(x), F,(x,8) ,
xeX

so as to quarantine the part depending on B. The advantage of this
formulation is that the decision-maker gains a clearer understanding
of how his objectives are influenced by uncertainty. As an example,
let Fl represent the immeciia.te payoff of a multistage decision
problem, and let F2 represent the present worth of the future payoffs,
where £ represents the future values of exogenous variables.

Another restatement of (4) is obtained by using regret in place

of payoff. Assume that -f Max f(x,8)] is achieved for each B € B.
xe X
The regret due to making decision X and then observing B 1is defined

to be

r(E,E) = [ Max f(E,E)] = f({:é) .
xeX

Stating problems in terms of regret rather than payoff has the advantage
of highlighting the consequences of uncertainty in E dramatically.

In addition, regret may have more tractable mathematical properties
than payoff (assuming that the indicated maximization operation is

not overly difficult), due to non-negativity and sometimes symmetry.




When B 1is known exactly, maximizing payoff is, of course,

‘exactly equivalent to minimizing regret. When B is uncertain,

however, and various criteria are applied in order to arrive at a

.decision, it is well-known that different decisions often result
depending on whether payoff or regret is used.

In this work the discussion will be carried on primarily in
terms of payoff, but with the obvious modifications each criterion

can be applied to regret as well.

3.1 Reformulations not Involving Probabilities

We shall briefly review a few classical decision criteria which
do not involve probabilities. An example is given to illustrate that
it can be more useful to consider several criteria simultaneously

rather than to search for a single ideal eriterion.

Admissibility Criterion

Consider (4). A decision x' is said to be admissible (with
respect to X and B) if 5' € X and if there exists no other
decision x" e X such that f£(x",B) > f(x',B) for all B € B, with
strict inequality holding for some value of B € B. If such a decision
x" did exist, it would be said to dominate x! (one may also define
weak dominance by dropping the proviso that strict inequality must
hold for some value of E). The admissibility criterion requires
that one choose an admissible decision. In other words, if a(x)

is defined to be equal to 0O if X is admissible and equal to -1

if x is inadmissible, (4) is reformulated as:

(%.1) Maximize a(x) .
X eX =

12
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‘The difficulties with this criterion are twofold: the set of

admissible decisions may be onerous to determine canmtationil],y_, and

this set may be quite a large subset of X.

Maxmin Payoff Criterion

' A conservative decision-maker might invoke the maxmin payoff

criterion, which yields

(8.2) Maximize [ Inf f£(x,8)] .
. xeX BeB

The corresponding criterion in terms of regret is known, of course,

as the minmax regret criterion.

Estimate Criterion

The estimate criterion requires that one pick a value for 8§,

A A 5/
say E, and then act as though E were the true value of E
That is, solve

(5.3) Maximize f(_}_:,ﬁ) L
xeX

A
Since f may be chosen to be any point in B, we see that we

really have a whole family of criteria.

2/ This criterion is included in order to formalize the common practice
of using judgmental or engineering approximations to costs and other
parameters of decision models. The notion of an estimate is related
to the idea of a certainty equivalent, which will be discussed at the
end of subsection 3.2. It should be noted that this criterion may
also be invoked when B 1is regarded as a random variable, and in
fact, the expected value of £ is a popular estimate.

13



The computational advantages of this approach are obvious. It (—)
is not so obvious that there exists a "good" estimate in B, or

how to find one.

The Principle of Insufficient Reason

Assume that B consists of a finite number (k) of elements,
each denoted by El. Then the Principle of Insufficient Reason asserts

that one should replace (4) by

, e i
{(4.4%) Maximize | & > f£(x,B7) |.
b e -7
xeX i=1

Comparison of Criteria

The above decision criteria are representative of the methods
which have bteen proposed in an effort to circumvent uncertainty in
the objective function in the absence of probabilities. The diffi-
culties of selecting one criterion which satisfies all of a compre-
hensive set of intuitively appealing desiderata for “"rational"
decision-making are well-known (see, e.g., Luce and Raiffa, 1957,
Chapter 13), and suggest the futility of seeking an ideal criterion.
One pessible way cut of this dilemma is to consider several criteria
at once, and thus to reformulate (4) as a vector maximum problem.
The actual choice of a decision would be made on an ad hoc basis
from the set of efficient solutions.

Table 1 defines a decision problem in which there are four
possible values of B, and five possible decisions. The entries
give the wvalues of f(zi,Ej) and the consequences of each possible

decision in terms of average payoff (on which the Principle of

1k



AVERAGE PAYOFF

'_J

)]

W

Decision x

"o e




Insufficient Reason is based) and in terms of minimum payoff (on
which the maxmin payoff criterion is bgsed). Figure 3 grapﬁs these
.consequences. ‘

All decisions are admissible. The Prihciple of Insufficient
Reason would lead to the choice of decision mumber two, while the
maxmin payoff criterion leads Eo the fifth decision. However, it
seems reasonable to favor the fourth decision over any of the others
because it comes very close to satisfying both of the above criteria.

We submit that by judicious choice of two criteria the resulting
vector maximum reformulation of (4) can be expected to lead to a more

satisfactory decision than a single criterion.

3.2 Reformulations Involving Probabilities

With the additional assumption that E may be regarded as a
random variable, one may choose to regard (4) as a continuous game
in normal form. This viewpoint, and the consequent game-theoretic
solutions, will not be considered here. Instead it will be assumed
that B has a known probability distribution p over B and so
(4) may be regarded as a game against a neutral "Nature." That is,
we are in what is sometimes known as a situation of individual decision-

Mgl

making under
The principal tenet of utility theory (an excellent summary is
given in Luce and Raiffa, 1957, Chapter 2) is that for a "rational"

decision-maker there exists a utility transformation of £, which

we denote by u(f), such that the most preferred decision is an

16




optimal solution of:

Maximize E[u(f(x,B))] .
xeX

If one accepts any of the sets of axioms of rational behavior leading
to this result, then the maximum expected utility criterion is justified
provided that the required utility transformation is at hand.
Unfortunately it may be very tedious actually to determine u(f).
For this reason (and also because of certain reservations which we
have with regard to the axioms of utility theozjy), we .shall consider
other criteria which can be applied directly to f(x,B) without the
need for a utility transformation. We begin by introducing a natural

analog of the admissibility criterion.

Stochastic Admissibility Criterion

For fixed X, p 1induces a probability distribution on f which
may be plotted in cumulative form as in Figure 4 (each curve represents
the cumulative distribution function of f corresponding to different
values of X). Loosely speaking, one wishes to perform (4) by choosing
an x which determines a c.d.f. that is uniformly as low (or, equiva-
lently, as far to the right) as possible. In Figure 4 it is clear that

the c.d.f. determined by x, must be strictly preferred to that of

2

X need not be preferred to p.S Observe that although

ESE 2 -2

the probability density functions determined by X

while p.!

and X overlap,

2
the c.d.f.'s do not.

We formalize the above ideas in terms of the concept of stochastic

dominance. A decision Eo is said to stochastically dominate z'

17

Y




(x> (§%)5)001

(3% > (§%)3)q04d

0'T
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if Prob[£(x°,8) < k] < Prob[f(x',B) < k] for all real k, with

strict inequality hold}ﬁg for at least one value of k (if we drop
the proviso that strict inequality mus£ hold for at least one value
of 'k, then we use the term weak stochastic dominance). If a feasible
decision is not stochastically dominated by any other feasible decision,

it is said to be stochastically admissib%g.é/ The stochastic admissi-

bility criterion requires that one choose a stochastically admissible

decision (this criterion can be written in a form similar to (4.1)).

Remark: Although we do not choose to do so in this paper, it is possible
to strengthen the stochastic admissibility criterion somewhat
by permitting randomized decisions over X. One would say
that the feasiblé decision x' 1is stochastically inadmissible
under a randomized decision strategy if there exists a proba-
bility distribution A on X not involving 5' such that
Probu’)\[f(f,g) <k] < Probp[f(lt_',_ﬁ_) < k] for all k, with
strict inequality holding for at least one value of k. For
example, in Figure k4, 53 is stochastically dominated by
the randomized strategy which chooses X5 and X, each with
a probability of one-half, even though neither X, nor X,
stochastically dominate 53 alone. Randomized decision
rules have the effect of taking vertically convex combina-

tions of the c.d.f.'s. It is clear that the set of

6/

—' Since stochastic admissibility is defined in terms of X and the
particular distribution p, to be precise we should qualify stochastic
admissibility as being "with respect to X and p." We omit this
qualification for the sake of brevity, since no confusion is likely to
result in our discussion.
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| stochastically admissible decisions allowing randomized
strategies is contained in the set of stochastically admissible

decisions allowing'only pure strategies.

We now explore the relationship between ordinary and stochastic

admissibility.

Proposition 1:

Let pu vanish outside of B. If 50 weakly dominateg x',

then Eo weakly stochastically dominates x'.

Proof: We must show that for all real 15 Prob[f(foag) < k]
S Prob[£(x",B) < k]. By the definition of (non-stochastic) weak
dominance, we have f(x',B) < f(§°{E) for all B e B. Thus for any
fixed value of k, f(§°,E) < k implies f(x',B) < k, and so for

each X we have
B eB £(x%8) <k)CI(p e B £(x',B) < k) .
The proposition follows.

Remark: To see that the converse of this proposition need not hold,

consider the following example. X (xo,xl], B = (31,32],

f(xoysl) = f(xl;Bz) =1, f(xo;Bz) f(xlyﬁl) = 2,

Prob[B = Bl] = .2 5, Prob[B = 32] = .8. Then x° stochestie

cally dominates xl, but  x° does not weakly dominate xl.

With additional hypotheses, one may strengthen Proposition 1.

20
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£ : Proposition 2:

.Let f(:_c,_g) be continuous on B for each x e X, and let
p be positivel/ everywhere on and vanish outside of B. If

50 .dominates x', then 50 stochastically dominates x'.

Proof: From Proposition 1 we have that x° weakly stochasti-
cally dominates x'. It remains to show that Prob[f(_:so,_B.) < k*] <
Prob[ f(x',B) < k*] for some k*. Since _:50 dominates x', there
exists PB* € B such that f(x°,8%) > f(x',B%). Put k¥ =
1/2(f(l(°,2*) + f(x',p*)). By the continuity of f there is a neigh-
borhood N* of PB* such that f(l(_o,E) 2 k* > £(x',8) for all
B e /B, and so by the positivity of u on B we have
Prob[ f(zo,g) > k* > f(z',E)] > 0. This fact, with the definition

of x°, yields
Prob[f(,_(l,é) < k*] - PrOb[f(E':E) < k¥* 5 f(zo,g)] +
Prob[£(x',B) < k* > £(x°,p)]

= Prob[f(x',p) < k* < £(x°,8)] + Prob[ £(x°,B) < k¥]

> Prob[ £(x°,B) < k*] .

Zf A probability distribution is said to be positive everywhere on
B if for each Eo € B then for every (b-dimensional) neighborhood

No of Eo the event [N"ﬂ B] has a non-zero probability. A neigh-

borhood of Eo of radius p is defined as ig: V (B‘;-Bi)2 < D} ’
i=1

and is denoted by ND(EO) when a complete notation is desired.

21
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Proposition 2 shows that, under the given assumptions, the set
of stochastically admissible decisions is contained in the set of
admissible decisions, as one would expect and hope. To see that the
set of stochastically admissible decisions can be considerably smaller

than the set of admissible decisions, consider the example

Maximize [10 - (B - x)2] s
Xx € R
where up  is the Normal distribution with mean E and variance 02,
and B = Rl. Viewing the objective function as a family of functions
of B indexed by X, this family is seen to conéist of concave
parabolas which are identical except for the axis of symmetry, which
occurs at P = x. Clearly every xo € Rl is admissible, for

f(xo,B = x°) 10 > £(x,B = xo) for all x # . 1t is also clear

that x' # B is stochastically inadmissible, for Prob[f(E,B) < k] <
Prob[ f(x',B) < k] for all k. To see this assertion, observe that

{B: f(x,B) >k} is an interval of width 2(lO-k)l/2 centered at

B = x. By the symmetry and unimodality of the Normal distribution,

the interval centered at B=PF must include the greatest probability
for any k, and hence Prob|f(E,p) 2 k] > Prob[(x',B) > k] when

x' # B, which is equivalent to the assertion that x' # B is
stochastically inadmissible. Since x =P8 is stochastically admissible,

we see that only x =B is stochastically admissible, whereas all x

are admissible,

The Maximum @-Fractile and the Aspiration Criteria

In terms of Figure 4, we would like to choose a decision which
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achieves. the lower envelope of c.d.f.'s everywhere. In general this

is impossible, but we can attempt to achieve it at a single point and

hope that this one point will "pin down" a c.d.f. so that it is close

. to the lower envelope. The point may be specified in terms of its

ordinate or abcissa value, whichever seems most natural in a given
problem context. The criteria implied by this idea are, respectively

and loosely:

Criterion F: Choose an Xx which corresponds to a
c.d.f. vhich approaches the lower envelope of c.d.f.'s
at an ordinate value of a0 < a < 1),

Criterion A: Choose an X which corresponds to a
c.d.f. vhich approaches the lower envelope at an abcissa
value of M(-» < M < =), I

It is evident that we have two entire families of criteria here, indexed
by a and M respectively. Criterion F with o = 0.1 would lead

to the choice of x, in Figure 4, and Criterion A with M = 20 would

2
lead to the choice of X,.

Criterion F is equivalent to maximizing the a—fractileg/of the
distribution of f(E,E) under u. That is, it maeximizes the payoff

level below which there is at most an & probability of fa,ll:i.ng.2

-§/ We define the Q-fractile of a (possibly mixed) cumulative distri-
bution function F(y) = Prob[Y <y] as

Sup{k: F(k) <a} .

9/ See Kataoka (1963) for a linear programming model of this type.
It is one of the few published references to this criterion.

23




It corresponds, for fixed O fa<l, to:
Maximize k
k,x

(4.5) subject to x e X
Prob[f(f,E) < k] <a.

When a is small, say less than 0.1, this criterion should appeal

to conservative decision-mekers because it tends to control the lower
tail of the distribution of Payoffs. When a = 1/2, (4.5) maximizes

the median of the distribution of payoffs, of course. We gometimes

uss the mnemonic nocation F(a) for this criterion.

Criterion A is equivalent to maximizing the probability of exceeding

a prescribed "aspiration" level M of payoff (see Charnes and Cooper,
1963, for an application to linear programming). It corresponds to:

(4.6) Minimize Prob[f(x,B) <M] .
X eX

We sometimes use the notation A(M) for this criterion.

Remark: It is to be noted that all cumulative distribution functions
in this subsection are written as Prob[f(;_c,_ﬁ_) < k] rather
than as Prob[f(x,B) < k] (regard X as being fixed),

This convention is followed in order to avoid some minor
difficulties which would be encountered by these two criteria
if the opposite convention were adopted and the c.d.f.'s

were discontimuous.
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We intrbduced these two criteria together because of their intimate

mathematical relationship, as well as their common graphical motivation.
When the lower envelope is attained by some x at every point, and is
continuous and strictly increasing, it is geometrically clear that

the F and A criteria are complementary in the sense that for every «
there is an M which leads to the same set of decisions, and conversely.
Without such assumptions, however, the complementarity is weakened,

as we shall see in the following two easy propositions.

Proposition 3:

(i) Assuvme that criterion F(ao) is satisfied by at least one
decision. Then the set of decisions which satisfy criterion
F(ao) contains the set of decisions which satisfy criterion

A(M®), where M° is the maximum o°-fractile.

(ii) Assume that criterion A(M°) is satisfied by at least one
decision. Then the set of decisions which satisfy criterion
A(Mo) contains the set of decisions which satisfy criterion

F(@°), where o° £ Min Prob[f(x,) < M°].

xeX

Proof: (i), Let x* satisfy F(a®), and let M° be the maximum
a®-fractile. If x° satisfies A(M°), then Prob[ £(x°,8) < M°] <
Prob[ £(x*,B) < M°} < a®, and so Eo must also satisfy F(a°).

08

Min
xeX

(1i), Let x* satisfy A(M°), and let o

Prob[ £(x,B) < M’] = Prob[f(x*,p) < M°]. 1If x° satisfies F(a°),

then there exists koiz ¥° such that Prob[f(§°,g) < k°} < a®; since
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k® > M°, we have Prob[ £(x°,8) < M°] < Probl£(x°,8) < k°] < o, O

from which it follows that x° must satisfy A(MC).

Proposition 4:

(i) 1Ir 50 satisfies criterion F(a°) uniquely, then it
satisfies criterion A(Mo) uniquely, where M° is the

. o ’
maximum o -fractile.

(i1) If x° satisfies criterion A(M°) uniquely, then it
satisfies criterion F(Cto) uniquely, where

o = Prob[£(x%,8) < M°].

Proof: (i), Suppose that 50 does not satisfy A(Mo) uniquely.
Then there exists x' e X, x' # 50, such that Prob[f(x',B) < M°] <
Prob| f(zo,E) < Mo], which contradicts the fact that 50 satisfies

F(a°) uniquely.

(ii), suppose that 50 does not satisfy F(a°) uniquely.
Then there exist k° > M° and x e W W ¥ 50, such that
Prob[£(x',8) < x°] <& = Prob[£(x°,) < ¥°]. Since k° >M°, we
have Prob[f(x',8) < M’] < Prob| £(x',B) <k°], and so
Prob(f(x',p) < M’] < Prob[£(x°,8) < M°]. This contradicts the fact

that x° satisfies A(M®) uniquely.

It is possible for criteria F(a) and A(M) to lead to stochas-
tically inadmissible decisions. The next proposition is of interest

in this regard.
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I;roposition 59
(:i)' If Eo satisfies criterion F(¢®) uniquely, then 50

also satisfies the stochastic admissibility criterion.

(11) If x° satisfies criterion A(M°) uniquely, then x°

also satisfies the stochastic admissibility criterion.

Proof: (i), In view of part (i) of Proposition 4, to prove (i)

it is sufficient to prove (ii).

(ii), Let x° satisfy A(M°) uniquely, so that
Prob( £(x°,8) < M°] < Prob[f(x,8) <M°] for all x e X, x # x°.
Suppose that _)go were stochastically inadmissible. Then there would
exist x' e X, x'# Eo’ such that Prob[f(x',B) < k] <
Prob{ f(lco,_g) < k] for all k. Letting k = M°, one would obtain

a contradiction.

Now we turn to the relationship between the maxmin payoff criterion
and the maximum O-fractile criterion with o = 0. It is not at all
surprising that under mild assumptions these criteria are in fact

equivalent, i.e., the same decisions satisfy both.

Proposition 6:

Assume that f(x,B) is upper semicontinuous&/ on B for each
X € X, and that p 1is positive on and vanishes outside of B.
Then the maxmin payoff criterion is equivalent to the maximum

O-fractile criterion.

19 et X be fixed in X. Then f(x,B) is upper semicontinuous

at B° e B if for each € >0 T8> 0 (depending on Eo and €) such
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Proof: We shall rewrite (4.2) and (4.5) in such a way as to
emphasize their similarity, and then show that they are in fact

identical.
z S |t 11/
The maxmin payoff criterion can be written=—

Maximize [Sup{k: £(x,B) >k, VBeB}],
xeX

and the maximum O-fractile criterion can be written

Maximize [Sup(k: Prob[f(x,B) > k] =1}].
xeX A T

Define Sl(f) and Sz(a_c) to be the sets appearing in the first and
second problems, respectively, for fixed x. Clearly Sl(f) QSZ(E)’
Vx € X, for u vanishes outside of B. The pProof will be complete
when we show that Sg(l‘) Qsl(l‘)’ Vv xelX

We consider a fixed X, and drop the X arguments from

S and S_,. We may assume that § is not empty, for if it is

1 2
empty then S

2

1 is also empty, and the proof is complete. Take

k' € S,. Suppose that k' ¢ S,- Then there exists B' ¢ B such

that f(x,8') < k'. But by the upper semicontinuity of f(x,B) there

exists a neighborhood N' of E' such that f(E’E) < k' for all

that f£(x,B) < £f(x,B) + ¢ whenever EGNS(EO)-. If f is continuous,
then f 1is upper semicontinuous. Also, recall that if B is a finite

point set in Em, then f(g_c,g) is automatically continuous on B.

H/ This problem follows from the definition of 'inf' as the greatest
lower bound.
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t B € N'M B. By the positivity of p on B, this contradicts the

fact that k' € SE'

The F and A criteria have the interesting property that one may

perform a continuous monotonic transformation on f£(x,8) without
altering the decisions which satisfy these criteria. This certainly
is not true of the next criterion we shall discuss, the expected

value criterion. We emphasize this point in

Proposition T:

Let g(t) be any strictly increasing and continuous function

defined from Rl into Rl. Then (i) the set of decisions which

satisfy criterion F(a) does not alter if £(x,B) 1is replaced

by &(f(x,8)), and (ii) the set of decisions which satisfy criterion
( A(M) does not alter if f(x,B) is replaced by g(f(x,8)) and

M is replaced by g(M).

Proof: Observe that f£(x,8) <k if and only if g(f(x,8)) < g(k),
since g is invertible and strictly increasing. Hence (B: £(x,B) < k) =
(B: e(f(x,8)) < eg(k)}, and so Prob[f(x,B) < k] = Problg(f(x,B)) <

g(k)]. This yields (ii). To see (i), write

Sup(k: Prob[f(x,B) < k] <a)

sup(k: Prob[g(f(x,8)) < g(k)] < a)

sup(g™ (g(k)): Prob[g(f(x,8)) < g(k)] < a)

g '(sup(a(k): Problg(s(x,p)) < g(k)] < a))

g (sup(t: Problg(£(x,8)) < t] <a)) .
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Finally,

- Mex [sup(k: Prob[f(x,B) < k] <a}]
xeX
= g™( Mex [Suplk: Problg(f(x,8)) <k] <al}l) .
- xeX

Maximum Expected Payoff Criterion

The F and A criteria are designed to achieve the lower envelope

of the family of c.d.f.'s ({Prob[f(x,B) < k]]x 5 at a single point,

X
in an attempt to "pin down" a c.d.f. to lie "close"to the lower
envelope. Another approach would be to use the area above the lower

envelope and below a candidate c.d.f. as a measure of "closeness."

Criterion E: Choose an X € X which determines the
c.d.f. with the least area below it and above the lower

envelope.

We shall show now that this geometrically motivated criterion

is equivalent to the maximum expected payoff criterion:

(k. 7) Meximize E[f(x,B)] .
xeX

Proposition 8:

Criterion E is equivalent to the maximum expected payoff criterion.

Proof: The proof is a simple consequence of the geometric inter-
pretation of the mean of a random variable in terms of the graph of
its cumulative distribution function. In Figure 5, the mean of the

random variable Y is area 1 minus area 2 (see Parzen, 1960, p. 211).
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Denote by A(x)+ the area corresponding to area 1 of Figure 5

for the c.d.f. Prob[f(x,B) < k], and by A(x)~ the area corres-
ponding to area 2. Similarly, denote by A" and A" the areas above
and below the lower envelope of all such c.d.f.'s. The the maximum
expected payoff criterion may be written

Maximize [A(x)" - A(x)7],

xeX
and Criterion E may be written

Minimize [(A(x)” - A7) + (A" - A(x)N) 1.
xeX

Clearly these two problems lead to the same decisions.

1

ProblY < k]

+
Figure 5

There is an obvious and fortunate relationship between the maximum
expected payoff criterion and the estimate criterion which sometimes
permits one to choose an estimate in a simple way so that the estimate
criterion is satisfied by the same set of decisions as the expected

payoff criterion.
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Proposition 9: (v)

Assume that f(f,g) can be written as
£(x,8) = Fi(x) + F,(B) + };, H (x)B, .

2 2
Then the estimate criterion with B = E[B] 1is satisfied by the

same set of decisions as the maximum expected payoff criterion.

Proof: The maximum expected payoff criterion gives

Maximize E[Fl(J_C) +F,B) + L Hi(f)ﬁijl » or
xeX i

Maximize [Fl(i_c) + E[Fy(B)] + ) H,(x) E[Bi]:| =
1

xeX

The estimate criterion with ‘§‘= E[B] gives
Maximize [Fl(;_c) + F(E[B]) + E H, (x) E[Bi]] :
xeX i

Since the F2 terms of each problem do not contain X, they may
be deleted, and hence the two criteria lead to identical sets of

decisions.

When the above proposition applies, we say that the estimate

A
B = E[E] is a certainty equivalent with respect to the maximum

expected payoff criterion. Other results in the same vein are given
by Reiter (1957), Simon (1956), and Theil (1964).
It is easy to see from Proposition 8 that any decision which
satisfies the maximum expected payoff criterion must be stochastically
admissible. St )
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It is also worth noting that the expected value criterion leads

to the same decisions when applied to payoff as when applied to regret.

In general this is not true for criteria A(M) and F(a).

3.3 An Example
We present a simple inventory model as an illustration of the

ideas of this section and as a vehicle for further discussion. Consider
a firm stocking and selling a single commodity for a single period of
time. We use the notation

X = number of units to be ordered in advance of the

demand

B = unknown demand level during the period

¢ = cost per unit

r = revenue per unit (r > c¢)

Vv = salvage value per unit left at end of period (v < c)

H
—~
L

M

W

~
[}

total profit
X = [0,)
B=[0, BMAX]’ where BMAX is chosen sufficiently large

to account for the largest likely demand
The payoff and regret are given by

(r-c)B - (x-B)(c-v) if B <x

f(x,B) =
(r-c)x if p>x
(c-v) (x~-B) if B<x
r(x,B) = =
(r-c) (B-x) if p>x.
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First we examine the criteria not involving probabilities over
the set of possible demand levels. All choices for x € X are readily
seen to be admissible. The maxmin payoff criterion leads to the decision
to order zero units, since Min f(x,B) = -(c-v)x. When this criterion
is applied to regret, howeveg, eiE (mimmax regret) leads to the decision
to order [(r-c)/(r-v) ]BMAX' This is the same decision that the
Principle of Insufficient Reason would give if we interpret it as
putting a uniform distribution over [O,BMAX]. The estimate criterion
leads to a trivial maximization probleqn once an estimate % is chosen,
and indicates that we should order exactly x = ’B\

Next we examine the criteria involving probabilities over the set
of possible demand levels. In order to plot the cumulative distri-
butions of payoff for various candidate x's » we need to know the
set of PB's for which the payotf is less than k.

(
[} if k < -(c-v)x
(B: B >0, £(x,8) <k =J [o, Eﬂb——“;"’)x) if -(e-v)x < k < (r-e)x

[0,=) if k > (r-c)x .

\

Using the fact that x is non-negative, we have for k >0

i ' I xS -(;lf—c)—
Prob[ £f(x,B) < k] =
(-]
i -f du if x > =X
k+(c-v)x T L
r=-v

O




For k<0,

-k
0 f - XS =
Prob[ £(x,B) < k] =
(-]
-k
1 -f dp if xz-(—)-
k+(c-v)x o=
-V

The lower envelope may be obtained by solving, for all real k,
the problem
Minimize ©Prob[f(x,B8) < k] .
x>0
This problem has a very simple solution for this example. For k < O,

the minimum is zero and is achieved for 0 < x < |x|]/(c-v). For x >0,
(-]

the minimum is 1 -] and is achieved for x = k/(r-c).

dp
k/(r-c)

Assume for computational simplicity that the demand is exponen-
tially distributed with mean 10, that (c-v) = 1/2, and that
(r-¢) = 3/2. Then for k >0, the lower envelope has height
[1 - exp[-.0666 k]], and is achieved at x = 2k/31—2/ Figure 6
illustrates the lower envelope and a few sample c.d.f.'s. Observe
that each cd f. jumps to the value 1 as soon as it attains the lower
envelope, and that every x Z 0 1is stochastically admissible.

We are now in a position to read off the "optimal" decisions
corresponding to criteria A(M) and F(a) for any choice of M

or a. A(M°) leads to the unique choice of x = M°/(r-c), and

F(ao) leads to the unique choice x = -10 ln(l-ao). In this

Hr Note that the lower envelope is the c.d.f. of an exponential
distribution with mean 15.
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particular example, these criteria do not fulfill their promise of
"pinﬁing down" a c.d.f. to lie close to the lower envelope, because

each c.d.f. is discontinuous at the point at which it achieves the

lower envelope.

The maximum expected payoff criterion may be applied by setting
the derivative of E[f(x,B)] equal to zero and solving for x.
This computation leads to the well-known (Dvoretzsky, Kiefer, and
Wolfowitz, 1952) result that one should choose the value of x

corresponding to the (r-c)/(r-v)-th fractile of p. That is,

x* should satisfy J[x* du = (r-c)/(r-v). For the data assumed above,
x* = 13.8. It is ingeresting to observe that if p were uniform

on [O,BMAX], then the minmax regret criterion would lead to exactly
the same action as would the maximum expected payoff criterion.

Next we carry out a parallel analysis in terms of regret rather
than payoff , It will be seen that A(M) and F(Q) are more
appealing when applied to the regret distributions. An argument will
be presented for choosing a value of x other than that which mini-
mizes expected regret (which, of course, is equivalent to maximizing

the expected payoff, the now classical solution to this problem).
We have, for k > 0,
- k . k
[O, b, m—y] if x < T—TC-V
[ - 50 bt -35-] if x> =
c-v r-c ~ (c=v

Since we are dealing in terms of regret, rather than payoff, we seek

{B: g >0, r(x,B) <k} =

the upper envelope rather than the lower envelope. It is obtained by




meximizing, for all  k >0, Prob[r(x,B) <k]:

+ —

r-c
Maximize du .
x>0 k
- Max{O, X = E:;S

Since the exponential distribution is monotone decreasing, the maximum
is easily seen to be achieved at x = k/(c-v). The height of the
upper envelope is therefére equal to Prob[p < k/(e-v) + k/(r-c)].
For the data given previously, this quantity is computed to be
[1-exp(-0.2666 k)], and the upper envelope is achieved for x = 2k.
Figure 7 is the counterpart of Figure 6. Note that the c.d.f.'s
are continuous, so that A(M) and F(a) ‘are more effective in their
endeavor to "pin up" a c.d.f. to lie near the upper envelope.
For a given value of x, it is a straightforward matter to calcu-
late the expected regret and the Q-fractile. This has been done
for @ = .95 and some representative values of x in Figure 8. The
striking feature of this graph is that large relative changes in .95~
fractile are available with only small relative changes in expected
regret, with the result that it becames attractive to deviate from
the ordinary minimum expected regret solution to the problem. For
example, consider x = 13.8 (which yields the minimum expected regret)
in comparison with x = 20. The former has an expected regret of
6.9 and a .95-fractile of 24.1, whereas the latter has an expected
regret of 7.7 and a .95-fractile of 14.8. That is, by choosing x = 20
instead of 13.8, one may achieve a 38.5% decrease in .95-fractile at
the expense of only 11.6% increase in expected regret; for x = 18
instead of 13.8, the percentages become 26.1% and 5.9%.
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This example shows a special instance of what is likely to be

a quite general situation: in the neighborhood of the decision indicated

By the maximum expected payoff criterion, iﬁ is possible to substan-
tially improve the o-fractile or aspiration levels of payoff or regret
without lowering the expected payoff very much. Such possibilities
ought to be investigated and exploited when found to be relevant to

the decision-maker's objectives.

3.4 Vector Maximum Reformulations

The "ideal" decision criterion is analagous to the much-sought
philosophers' stone of medieval times, and seems ebout as likely
to exist. We suggest that one might profitably consider, in a given
application, two or even three plausible criteria (not necessarily
the ones discussed herein) and reformulate (&) as & vecter mexlmus
problem. The solution of this vector maximum problem would reveal
clearly the tradeoffs involved between the criteria, and a decision
may be chosen in an ad hoc manner from the efficient candidates. For
example, if a situation such as Figure 9 occurs, one would probably
choose an efficient solution nearer to point B than to point A, for
a large gain in criterion 2 can be achieved at the expense of a rela-

tively small loss in criterion 1.

ACri‘t:erion 2 (to be maximized)

—3g— Criterion 1

Figure 9 (to be maximized)

T




One combination of criteria which seems particularly plausible

when a probability distribution over B is available is the @-fractile

criterion with the expected ;alue criterion. With o small, the

first criterion tends to control the lower tail of the distribution

of payoffs, while the second tends to control the mean. Such a com-

bination might be used to program a mutual investment fund, for example,

for the possibility of ruin or large losses seems to loom as a separate

dimension of utility from the average growth rate. Markowitz (1956)

had precisely this viewpoint in mind for his well-known portfolio

problem, except that he used variance in Place of the a-fractile.
Hodges and Lehmann (1952) proposed essentially this combination

of criteria, except that they took « equal to zero. Letting «

rise above zero seems to avoid some of the excessive conservatism in

their formulation, while keeping the aim of protection against large

losses.
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CHAPTER II
Reducing a Vector Maximum Problem to a

Parametric Programming Problem

In this chapter it is assumed that uncertainty has been removed
from a decision problem by means of devices such as those discussed
in the first chapter, and that it is desired to solve the vector
maximum problem.

(1) "Maximize" f£(x) ,
xcX

where f(x) = (fl(g_c),...,fr(z_c)), x 1is an n-vector, and X is
a given set of feasible decisions. Recall that "solving" (1) means
finding all efficient decisions, where a feasible decision 50 is
called efficient if there exists no feasible decision x' such that
£(x') _>__f_‘(§°).y We shall discuss two ways of reducing (1) to a
parameterized family of ordinary (one criterion function) mathematical
programming problems, or "parametric" programming problems. Existing
computational methods for these problems will be indicated.

This chapter is intended to serve as a bridge between the study
of decision problems under uncertainty, which was the topic of the
first chapter, and the study of a class of algorithms for parametric

programming, which is the topic of the third chapter.

1
= Recall that by this notation we mean fi(ﬁ') > fi(zc_o) (i =1,...,r)
with fi(f') > fi(io) for some i (see Footnote 1, Chapter I).
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1. Reducing (1) to a Problem Parametric in the Constraints

From the definition of an efficient decision for (1), 1% is
easy to see that a feasible decision 50 is efficient if and only if
30 is an optimal solution to each of the 1 problems

Maximize £y (x)

subject to fj(f).z fj(fo) s d=1, wos , r DUt FFED

i=1,.0.,r. It follows immediately that the following assertion

holds.

Proposition 1:

Let 1<i <r be fixed. If x° is efficient in (1), then
there exists an (r-1)-vector 8 such that §° is an optimal
solution of (3io), where (3i) is given by

Maximize fi(g)

(31) xeX
subject to fj(g)zaj, J=1 ca. 5 B buk  Julrl

This proposition suggests a method for finding all efficient
decisions. Taking r = 2 and io =1, for example, we find the
set of all efficient decisions among the totality of optimal solutions
to

Maximize fl(f)
(3) L
subject to f2(§) 28

as 8 varies over (-w,+»), Often fe(z) is bounded from above

Ly

O
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on X, and so the interval of parametric variation does not extend

to +w, Likewise when f2(§) is bounded from below on X, or when
the maximum of fl(ﬁ) on X is achieved for some value of x, the
interval of parametric variation need not extend to -w.v

This method yields not only all efficient decisions, but possibly
some inefficient ones as well, since it may be possible to increase
f2(§) without decreasing fl(z) below its maximum value for a parti-
cular value of 8. A similar remark holds a fortiori for r > 2.
Culling out the inefficient decisions when r = 2 1is easily done,
in principle, by viewing the graph of (fl(f)’fa(z)) for all candi-
date decisions generated by the method. For r > 2, graphical analysis
rapidly becomes impractical, and one must rely on sufficient conditions

such as those given in

Proposition 2:

Let 1<i <r andthe (r-1)-vector 8, be fixed, and let
x° be an optimal solution to (3i,) with 8 =8 . If any of
the following three conditions are satisfied, then §° is

efficient in (1).

(1) Eo is also an optimal solution of the r-1 problems

(31), 1i#i,, with 8, = fj(§°), i=1,...,r.

(ii) Eo is the unique optimal solution to (310) with

=238 .
= =o

’ o . . . ! ;
(1ii) x~ 1is the unique optimal solution to (310) with
o :
83 - f,j (E )) .j # lo'
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Proof: If (i) is satisfied, x° is efficient in (1) by the O

opening remark of this section.

~ Assume that (ii) is satisfied, and suppose that 50 is not
efficient. Then there exists x' e X such that £(x') > £(x°),
which implies that 5' is feasible and optimal in (310) with

= §o’ thus contradicting the unique optimality of 50. Hence

|on

x° is efficient. ‘
Since 50 also is an optimal solution of (310) with Sj = fj(zo),

the argument apropos (ii) applies.

Under additional hypotheses, Propositions 1 and 2 can be combined

to give

Proposition 3:

Let 1< io < r be fixed. Assume that fio is strictly concave,
fj(j # io) is concave, and X is convex.g/ Then 50 is
efficient in (1) if and only if 50 solves (3io) for some (r-1)-

vector §.

Proof: Necessity was proven in Proposition 1. To prove suffi-

ciency, apply A.2 of Appendix A and part (ii) of Proposition 2.

2. Reducing (1) to a Problem Parametric in the Objective Function

We shall give some conditions under which (1) can be reduced to

2 : e e
—/ See Appendix A for definitions of convex sets and concave functions,
and some properties thereof which will be used freely in the sequel.

o
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a family of problems of the form

. r
() ' . Maximize 2 vifi(E) ,
xeX i=l

where v >0 is a vector-valued parameter.

Proposition 4:

(1) If v>0 and x° is an optimal solution to (4), then

x° is efficient in (1).

(i1) If v>0 and x° is the unique optimal solution of

(4), then x° is efficient in (1).

Proof: Suppose that (i) is false. Then there exists x' e X
such that f(x') 21‘(50); since v > 0, this implies that
Tv,E () >y vifi(;_c_o), thus contradicting the optimality of x°
in (4). This proves (i).

Suppose that (ii) is false. Then there exists x' e¢ X, x' # Eo’
such that f(x') > £(x°); since v > 0, this implies that
Evifi(z') EZVifi(_}_c_o), thus contradicting the unique optimality

of x° in (k). This proves (ii).

3/

Proposition 5:=

Let X be convex, let fi(f) be concave, i = 1l,...,r, and

let 50 be efficient in (1). Then there exists an r-vector

v® >0 such that x° is an optimal solution of () with v = v°.

3/ The earliest statement and proof of a theorem of this type seems to

be due to Kuhn and Tucker (1951). An elegant proof of this proposition
has been given by Karlin (1959, p. 217). For the sake of completeness

we record a slightly different version of that proof here.
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Proof: Put P = (p ¢ E': 22 £(x°)). Clearly P is convex.

Bat Z= {2 ¢ E: z < f£(x) for some x € X}). Z is convex, for

A

let z',2" € Z and let 0< A < 1. By the definition of Z there

exist x',x" € X such that z' < f(x') and 2" < £(x"). Hence
Ozt + (102" AL + (NI < £ + (1n)e)

where the last inequality follows from the concavity of f(x). Since
(Ax' + (1-A)x") € X by the convexity of X, (Az' + (19)z") & 2.

This shows that Z is convex.

Because x° 1is efficient, Z(P is the single point £(x°),
so that Z and P have no interior points in common. Hence we may
apply the well-known Theorem of the Separating Hypefplane (see A.7,
Appendix A) to assert the existence of an r-vector Xo ;4 O and a

scalar c¢ such that
o o
ZViZiSCSEViPi’ vz € Z, PeP.

The right-hand inequality and the definition of P imply that
\_ro > 0, for otherwise the sum Z:vio pi would be unbounded from
below. By the definition of Z, the left-hand inequality yields
Evg fi(l‘) < ¢, Vx e X. Taking p= i‘(go), we have Evg fi(l{) <
zvi fi(zo), Vx € X, which is equivalent to the assertion that
Eo is an optimal solution of (%) with ¥ = \_/o.
When the hypotheses of Proposition 5 hold, one is sure to find
all efficient decisions for (1) among the totality of optimal decisions

for (4) as v ranges over all non-negative values. Notice that
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without loss of generality one may take Zvi =1 in (4), since for

fixed v > 0 the objective function of that problem can be scaled

by a factor of l/ 2>vi without affecting the set bf optimal solutions.
Hence v is really only an (r-1)-dimensional parameter. When r = 2,
for example, (4) reduces to the parametric problem

(4.1) Maximize vfl(z) + (1-v) f2(§) for each 0<v<1.
x e X

By strengthening the hypotheses of Proposition 5, the last two

Propositions can be combined to give

Proposition 6:

Let X be convex, and let fi(lc) (i =1,...,r) be strictly
concave. Then x° is efficient in (1) if and only if x°

solves (4) for some v > 0.

Proof: Necessity was proven in Proposition 5. To prove sufficiency,

apply A.2, A.4, and part (ii) of Proposition L.

Bl Computational Methods for Parametric Problems

A very common approach for a decision-maker to take, when faced
with solving a multi-criterion rroblem such as (1), is to reformulate
(1) in the form of (3i) or (4) (or Possibly a combination of the two)
with & or v fixed at some value of particular interest. Problem
(3i) corresponds to selecting and retaining the most important criterion
function and putting the rest in as constraints so that the remaining

criteria each meet at least some minimally acceptable level.i/

4/

=' For an early and important example of this, see Neyman and Pearson
(1933), who employed this device as a cornerstone of their theory of
statistical hypothesis testing.

k9




which is designed to reflect the relative importance of each. Such
an approach offers computational simplicity in comparison with a
complete solution of (1), since Just one ordinary maximization problem
has to be solved. After (3i) or (4) has been solved for the selected
§° or zo, the value of 8 or v may be varied in a neighborhood
of éo or XO in order to ascertain how the corresponding optimal
decisions and payoff function vary. This is a type of "sensitivity
analysis." The above propositions relate this type of sensitivity
analysis to the partial solution of (1) in the vector maximum sense.
Whether for purposes of sensitivity analysis or of solving (l),
solution methods are required for the parametric Problems associated
with (31) and (4). Since analytic methods can be expected to have
very limited applicability—if experience with non-parametric mathe-
matical programming is any guide— numerical methods must be employed.
In this regard, we are obliged to limit our consideration to problems
for which X is convex and fi(z) (i =1,...,r) is concave, for
most known programming algorithmsé/ require at least convexity of
the feasible region and concavity of the objective function. We shall
further 1limit our consideration to the important case r = 2, because
the vastness of the parameter space increases so rapidly with r as

to preclude the reasonable hope of solving parametric problems even

to reasonable approximation when r 1is much larger than 2 or e

2/ For surveys of (nonlinear) programming algorithms, see, e.g.,
Dorn (1963), Hadley (1964), Saaty and Bram (1964, Chapter 3), Wolfe
(1962), and Zoutendijk (1960).

Problem (4) corresponds to maximizing a weighted combination of criteria




We now indicate some existing computational methods, and point out

the need for the developments of the next chapter.

If X is a convex polyhedron (i.e., the feasible region is
determined by a set of linear equalities or inequalities), then several
efficient parametric programming algorithms are available for certain
special classes of criterion functions: when fl and fé are both
linear functions, parametric versions of (3) and (4.1) can be solved
by parametric linear programming (Gass, 1955); when fl is linear
and f2 is a quadratic polynomial,é/ the algorithms of Houthakker
(1960) , Markowitz (1956), and Wolfe (1959) are available;Z/ when f

and f, are both quadratic polynomials, an algorithm of Zahl (196k4)

2
essentially solves (k.1), although it seems possible to improve upon
the efficiency of his procedgre by utilizing the developments of the
next chapter. Little if anything appears to have been done to devise
efficient algorithms for parametric problems involving more general
classes of criterion functions or feasible regions other than convex
polyhedra. The class of algorithms developed in Chapter III is
intended as a contribution in this direction. At the present state
of the ait of parametric programming, however, one must fall back
upon more rudimentary methods.

In principle, if an algorithm is available which will solve

(31) or (4) for any particular value of the parameter, then by

7 That is, fa(f) = §tQ§ + 3?5, where t denotes transpose and Q

is a negative semidefinite matrix.

1/ See also Boot (1963a, 1963b).
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employing a suitably fine grid of parameter values one can obtain a
discrete approximation to the optimal solutions of the parametrid
problem. This is a very straightforward approach, and for many
Problems it may be fairly Practical, since the optimal solution for
one parameter value can be expected to provide a nearly optimal
solution at the next parameter value on the grid. Because most
Programming algorithms may be viewed as gradient methods, this
approach should provide roughly first order convergence between
optimal solutions at adjacent Pairs of grid points.

In the next chapter we offer an alternative to the last approach
under quite general assumptions on the criterion functions and the

feasible region. We shall develop a class of algorithms for solving

(%.1), a main member of which exhibits second order§/ convergence

between adjacent pairs of grid points.

L7 A sequence < x’ > which converges to x° exhibits first (second)
order convergence if the norm of the error at the n-th step is
asymptotically proportional to the (square of the) norm of the error
at the n-lst step (see Appendix C, section 1).




" CHAPTER IIT

A Class of Algorithms for Parametric Concave Programming

=d Introduction and Preliminaries

In this chapter we present a class of algorithms for solving parametric
concave programming problems of the form

Maximize afl(i) + (1-a)f2(5)

) z

subject to g(x) >0

for each « € [0,1], where x is an n-vector, fi(f) (i = 1,2) is
strictly.concave,i/ and each component function of g({) = (81(5),...,gm(§))
is concave. Certain additional regularity requirements are detailed in
subsection 2.1.

Since our topic is parametric programming, rather than ordinary
(non-parametric) mathematical programming, we shall further assume
that an optimal solution of (R¥) is available for some value of «
in the unit interval. This assumption is in fact not restrictive,
for it is shown in subsection 1.1 that a parametric programming algorithm
for (Rx) which requires an optimal solution for some value of «
in order to "get started" can itself be used to generate such an

optimal solution.

i/ The algorithms to be given still apply if (in the following, € > 0O
is arbitrarily small): (a) fl is strictly concave and f2 is (non- ..
strictly) concave and ([0,1] 1is replaced by [e,1], or (b) £, is
concave and f2 is strictly concave and ([0,1] is replaced by

{0,1-€l, or (c) af, + (1-a)f2 is strictly concave for each fixed

a € (0,1) and [0,1) is replaced by [e,l-e].
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The remainder of this section motivates (Rx) and the present

class of algorithms: in subsection 1.1 it is noted that (Rx) subsumes

the vector maximum problem for twé criterion functions and also the
standard (non-parametric) concave programming problem, and in sub-
section 1.2 the Kuhn-Tucker Theorem for nonlinear programming is
presented in slightly unconventional form so as to display clearly

the foundation upon which the present class of algorithms is built.
Section 2 is devoted to presenting and proving a Basic Conceptual
Algorithm for solving (Rx) for each value of & in the unit interval.
Three graphical examples are given in Appendix B. The development

of this conceptual algorithm into a Basic Computational Algorithm, via the

use of Newton's method for solving the relevant systems of equations,

is the subject of section 3. Some necessary computational devices are
recorded in Appendix C. Section 4 hosts a modification (more accurately,
a completion) of the algorithms aimed at improving their efficiency.

Two extensions are indicated in section 5: the adaptation of the

present algorithms to handle linear equality constraints, and the
Possibility of solving more general kinds of parametric problems than

(Rx).

1.1 Motivation of (Rw)

One motive for studying (Rx) was given in Chapter II. From
Proposition 6 of that chapter, which applies because of the above
assumptions, solving (Rx) for all 0<a <1l is exactly equivalent
to solving the vector maximum problem

(1) "Maximize" f (x), f (x) subject to g(x) >0 .
o) =
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That is, every efficient decision for (1) is an optimal solution of
(Rt) for some 0 <a<1, and conversely.
Another reason for studying (Bx) is that it subsumes the standard
problem of concave programming. Suppose that it is desired to solve
(2) Maximize F(x) subject to g(x) >0,
x
where F(x) is strictly concave and the constraint functions are all

concave., If 50 is any feasible decision whatsoever of (2), put

(Rx) egual to

Maximize OF(x) + (1-a)(-1) f; (x; - x‘i’)2
1

X

(3a)
subject to g(x) >0 .

Then 50 clearly is the optimal solution of (30), and (3x) satisfies
the assumptions required of (Rx) in the opening paragraph. Applying
an algorithm for parametric concave programming to (3) beginning
with @ = 0 and increasing & until = 1, one obtains the optimal
solution to (51), which is identical to (2). Hence a parametric
algorithm for (Rx) provides a "deformation" method of concave pro-
gramming.

Problem (3x) is capable of an interesting interpretation, which
we shall now sketch briefly. Consider an enterprise currently "operating"
at the (feasible) point 50, with a single criterion function F(x)

and a feasible operating region ({x: §(x) > 0}. Due to conservatism,

or a desire to avoid disrupting the operations of the enterprise
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radically, or to a desire to hedge against the risk of a faulty decisian (“)

model, assume that the managers of the enterprise prefer to adjust the

operating poinf; gradually from 50 toward x*, where x¥* is optimal

in (2). If the managers have a quadratic loss function ) (xi-x:;)2

associated with deviations from 50, the optimal solution to (3a)

as (a varies from O to 1 gives an optimum path from J_(o to x*,
Since (Rx) for fixed «a is of the form (2), the device repre-

sented by (3) can be used to find a starting optimal solution to

(Rx) if one exists (providing that a feasible decision is known), so

that the assumption stated in the introduction is not restrictive,

as asserted.

Of course, in place of (3a) one could use

Maximize oF(x) + (1-a)H(x)
(hex) =
subject to g(x) >0,

where H(x) is a strictly concave function with a known maximum

over the feasible region.

1.2 Theoretical Foundation

The standard problem of concave programming can be written in the

form of (mo) with o fixed. For simplicity of notation, we write

f(x;a) for afl(z) + (1'a)f2(§)' Hence (Rxo) mey be written as

(Rx) Maximize f(x;0t ) subject to g(x) > 0.
g =




Fundamental theoretical results concerning this problem have been given

by Kuhn and Tucker (1951). A version of their Theorem 3 is recorded

here without proof.

Theorem (Kuhn-Tucker):

Consider (Rzo) with o  fixed. Let f(-)_c;ao) and gi(_)_g)
(i = 1,...,m) be differentiable on the feasible region ({x: g(x) 2 0},
let f(fiao) be concave on the feasible region, and let gi(i)

{i = 1,...,m) be concave on E”. Assume that the constraint functions

satisfy the Kuhn-Tucker Constraint Qualification (see the remark
following the statement of the theorem).
Then io is an optimal solution of (R:!o) if and only if there

exist real m numbers )‘.g such that (EO,LO) satisfies the following

( {(Kuhn-Tucker) conditions—a/ at a = a:
m 3
(5) Vs + 3 » Vg (0 = 0
(6) g;(x) >0, i=1, ... , m
(N gi(i) {:}0 implies A; {;}0 o day=tile S o 1 i

Remark: TFor a statement and discussion of the Kuhn-Tucker Constraint
Qualification, see Xuhn and Tucker (1951, p. 483) or Arrow,
Hurwicz, and Uzawa (1961). It has been shown, for example,

that if all the constraints are linear then this qualification

g] The symbol v denotes the gradient of a function of several variables,

e.g., vxf(z) z(_a%? AT Bfii)) I
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is satisfied; and that the existence of an interior point

of the feasible region is also sufficient for the qualifi-
cation to be satisfied. The sufficient condition whicg will
be of direct use in the sequel is: if 5*((10) is an optimal
solution of (Rxo) > then the matrix whose rows are
xgi(z*(a.:))), i such that gi(z*(ao)) = 0, is of maximal

rank (see Arrow, Hurwicz, and Uzawa, 1961).

Direct analytical or numerical attempts to satisfy these conditions
have proven quite difficult, in general.
We shall find the following equivalent version of the Kuhn-Tucker

Theorem more suitable for our purposes.

Theorem (Kuhn-Tucker, an alternate version):
Assume that the hypotheses of the Kuhn-Tucker Theorem are satisfied.
Then §° is an optimal solution of (I—‘(xo) if and only if there
exist m real numbers ug and a subset S° of constraint indices

such that (Eo,go,so) satisfies the following conditionsat « = aoz

(kr-1) Vf(xe) + T v, Vg ® =0

(=8)a 2

(KT-2) g,(x) =0, Vies
u, =0, ¥ i¢s

(Kr-3) g, (x) 20, Vv if¢s

(kP-4) u;, >0, v ies.

58




Equations (KT-1) and (KT-2) appear so often together in the sequel
that we introduce the special symbol (=S)a to denote them (in this

notation, S and @ may vary). We also denote the set of the first m

positive integers by M.

The equivalence of the two versions of this theorem follows from

the easily verified

Proposition 1:

(i) 1f (50,2\.0) satisfies (5) through (7) at @, then
(x°,A%8°%) satisfies (KI-1) through (KT-b) at o  for

any So satisfying
(8) L eM: A7) >01Cs°C i eM: g (x%) =0} .

(i1) 1f (x°,u°,8°) satisfies (KT-1) through (KT-4) at a,,

then (50,30) satisfies (5) through (7) at a.

The numbers )\i or u, will be referred to as dual variables.
In view of Proposition 1 it is useless to distinguish between A and
u; henceforth we shall use the symbol u to refer to the dual vari-
ables of either version of the Kuhn-Tucker Theorem.

The concept of a valid set plays a central role in this work.
A subset s° of constraint indices is said to be valid at a, if
and only if there exists (Eo,go) such that (io,go,so) satisfies

(KT-1) through (KT-4) at a .
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Proposition 2:

A subset S° of constraint indices is valid at «  if and only
if 8° satisfies (8) for some (50,50) which satisfies (5)

through (7) at a .

Proof: Assume that s® is valid at @ . Then there exists (50,30)
such that (EO,EO,SO) satisfies (KT-1) through (KT-4) at s which
implies by part (ii) of Proposition 1 that (EO,EO) satisfies (5)
through (7) at o . By (KI-2) and (KI-4), (i e M: AJ>0}CS° holds.
By (XT-2), Sog {ieM: gi(go) = 0} holds. This proves necessity.

Assume now that S° satisfies (8) for some (50,50) satisfying (5)
through (7) at @ . By part (i) of Proposition 1, (Eo,bo,so) satisfies

(KT-1) through (KT-4) at o , which shows that s® is valid at .

The alternate version encourages the important observation that the

Kuhn-Tucker Conditions may be viewed as the Lagrange multiplier equationsy

—3-/ The method of Lagrange multipliers (see, e.g., Apostol, 1957, p. 153)
gives a set of first order necessary conditions for a point 50 to be
an optimal solution of the problem

Maximize f(x) subject to gi(g) =05 " A=, ek R
x

Assume that f(x) and gi(i) (i =1,...,m) are continuously differen-
tiable on some open region containing the feasible region, and that the
matrix whose rows are 4g;(x°), i=1,...,m, is of maximal rank (note
that this last assumption imSlies that m < n, where n is the dimension
of x). If x° is an optimal solution of the above problem, then

there exist MW real rnumbers A, such that (x°,A°) satisfies the
(Lagrange multiplier) equations? = e

V, £(x) R Ve (x) =0 ana

gi(§)=0, bl T I SRR e
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applied to a subset S of the constraints, augmented by the inequations
(KT-3) and (KT-4). Attention thereby focuses on discovering the
identity of a valid set, for if one knew a valid set S* then in
principle one could solve (=S*)ao for all solutions (x',u'),

among which at least one would satisfy (KT-3) and (KT-%) and hence
solve (R‘xo). Indeed, at least one algorithm (see Theil and Van de
Panne, 1960, and also Boot, 1961) has already been proposed which is
essentially aimed at determining a valid set. However, this approach
is probably not very efficient camputationally, for although it reduces
the concave programming problem to one of solving sets of simultaneous
equations, there is a vast number of candidate sets of equations to

be tried when a valid set is not known. It seems to be difficult, even
for problems of modest size, to know how to order the trials so as to
kegp the number of erroneous trials at a reasonable level. This
combinatorial difficulty is further aggravated by the numerical burden
of actually solving (=S)ao. Thus we may expect the customary gradient
methods to be more efficient than methods based on the "valid set
approach. "

Let us turn now to Parametric programming. It is perhaps surprising,
in view of the immediately preceding comments » that here methods based
on the "valid set approach” seem to have the advantage over gradient
methods. In fact the parametric programming algorithms (cf. section 3
of Chapter II) of Markowitz (1956), Houthakker (1960), and Zahl (1964)

each may be viewed as maintaining the identity of a valid set as a

parameter is varied.




Under appropriate assumptions the optimal solution x*(a) of

(Fx) and the associated dual variables u*(a) are unique and con-
tinuous. This fact, coupled with the observation that there is only
a finite number of subsets of constraints, suggests that if §' is
valid at ao’ say, then 8' is likely to be valid in some interval
including ao. If this is the case, then one may derive 5*((1) and
u*(@) in that interval by solving (=8")a parametrically, and (KT-3)
end (KT-4) are automatically satisfied. If this is not the case,
then even though (=S')a may have a solution near @, either (KT-3)
or (KT-4) will be violated, and it is necessary to find a new valid
set before being able to prbceed. Because of continuity, moreover,
a set which is valid near ao will usually differ by only a few
constraint indices from S'. This approach leads to a decomposition of
(Rx) on [0,1] into a chain of parametric subproblems. Each sub-
problem involves the parametric solution of tne Lagrange multiplier
equations associated with the constraints specified by a constant valid
set on a subinterval of [0,1]. By continuity the optimal terminal
solution to one subproblem is the optimal initial solution to the
next subproblem of the chain, and the valid sets of adjacent sub-
problems are both valid at the transition point between them.

Thus parametric programming can be reduced essentially to the
problem in numerical analysis of solving parameterized (nonlinear,
in general) simultaneous equations. This approach to parametric
programming turns out to be a useful one computationally, since the

systems of equations involved will be shown to be well-behaved. By




applying Newton's method (see Appendix C), second order convergence

can be achieved as the parameter increases by discrete increments,

whereas gradient methods display roughly first order convergence.

2. A Basic Conceptual Algorithm

In this section we state and prove a Basic Conceptual Algorithm

for solving (Rx)

for each value of & in the unit interval. We

use the adjective "conceptual" because computational implementation

is not considered at this point of the exposition. The Basic Con-

ceptual Algorithm can be modified and implemented in various ways,

as will be indicated in sections 3 and 4, thus giving rise to an entire

class of computational algorithms.

2.1 Assumptions

We assume that an optimal solution of (Rx) is available for some

value of @ in the unit interval, say @ = O (in view of the dis-

cussion of subsection 1.1, this assumption is not restrictive).

Throughout this work the following conditions will be imposed

upon (Rx). We denote the feasible region {x: g(x) :Q} by X.

Condition 1:

Condition 2:

The functions fi(z) (i =1,2) and 81(25)
(1 =1,...,m) are analytic on some open region
containing X, and the constraint functions are

concave on En.

X 1is non-empty and bounded.

6>
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Condition 3: The hessian matricesi‘-/ v)gc fi(f) (i = 1,2) are

negative definite for all X € X.

Condition 4: If a e [0,1] and x*(@)) is an optimal solution
of (Rzo), then the matrix whose rows are the
gradients vxgi(f*(ao))’ i such that

gi()_'i*(ao)) = 0, is of maximal rank.

A function f(xl,...,xn) of n real variables is said to be
analytic in a region R if in some neighborhood of every point of R
the function is the sum of a convergent power series with real coeffi-
cients. The class of all analytic functions includes, for example,
all polynomials, and seems amply wide enough to include nearly any
contimious function likely to be encountered in applications.

Conditions 1 and 2 imply, by A.l of Appendix A, that X is
convex and compact.

Condition 3 implies, by A.3, that fl and f2 are strictly
concave on X. This, in turn, implies by A.k that f(x;a) = afl(z) +
(l-a)fe()_() is strictly concave on X for each fixed value of
a € [0,1]. In the presence of Conditions 1 and 2, this last assertion
remains true even on some open interval containing {[0,1], as

Proposition 3 shows.

Proposition 3:

Assume that Conditions 1, 2, and 3 hold. Then V§f(5;a) is

L7
v)gc f(x) denotes the n by n matrix whose ij~th element is
3Pe(x)

. ox, °
i)

0




e PSS - =

negative definite on X for each fixed value of a in some

open interval containing [0,1].

Proof: It is well-known that Vi f(x;a) is negative definite at
(x,a) if and only if all of its eigenvalues gp(Vi £f(x;a)) (u=1,...,n)
are negative, i.e., if M:.x gp(VE f(x;a)) < 0. Assume for the moment
that the last-mentioned function is continuous in (x,a) on some open
region containing X x [0,1], where x denotes the Cartesian product.
Since a positive sum of negative definite matrices is again negative
definite, from Condition 3 it follows that Max gp(v: £(x;a)) <o
on Xx [0,1]. The proposition follows from this fact, the assumed

contimuity, and the compactness of X x [0,1].

To see that M'al.x gu(Vi f(x;a)) is continuous on some open
region containing X x [0,1], observe that Condition 1 implies that
the elements of vg f(x;a) are all contimuous on some open region
containing X x [0,1]. Since the eigenvalues of a square matrix are
continuous functions of its elements (Ostrowski, 1960, p. 192),
gp(v,az f(x;a)) (u = 1,...,n) is therefore continuous on some open

region containing X x [0,1]; the same must be true for

Max 6, (V2 £(x50)).

Remark: As indicated in Footnote 1 of this chapter, Condition 3 may
be weakened to (in the following, € > 0 is arbitrarily
2 2
£ ( o & =
small): (a) Vx fl(f) (vx fz\f” is negative (semi-)
definite for all x e X, if [0,1] is replaced vy [e,1],
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or (b) vz f2(_2_:) (Vi fl(f)) is negative (semi-) definite O

for al1 x € X, if [0,1] is replaced by [0,1-€], or

2 2 ] *
(e) oV £,(x) + (1-@) VT £,(x) is negative definite for
all x € X at each a e (0,1), if [0,1] is replaced

by [e,1l-€].

Condition 4 is equivalent to requiring that the gradients
Vi & (x*(a))), i such that g; (x*(a))) = 0, must be linearly
independent; hence at mest n constraints can be satisfied with
exact equality at an optimal solution of (Rxo). In the remark
following the Kuhn-Tucker Theorem, it was noted that this condition
implies that the Kuhn-Tucker Constraint Qualification holds. Thus
the hypotheses of the Kuhn-Tucker Theorem are satisfied by (Pao)

for each fixed a e [0,1] when Conditions 1, 3, and 4 hold.

2.2 Statement of the Basic Conceptual Algorithm

For convenience we view a as increasing fram O toward 1.

Step 1: Solve (Po) by any convenient method, so that
(x*(0), u*(0), s*) satisfying (KT-1) through (KT-4)
at a@ =0 is at hand. Put a® =0, s° = s*, and

(x,)° = (x*(0), u*(0)).

Step 2: Solve equations (=5°)a by any convenient method as
a increases above a° for the unique continuous

o o
solutiony (58 (o), BS (@)) satisfying the left

2 Throughout this work we employ the symbol (xs(a), u® (@)) to
dencte a solution of equations (=S)a. n - F O
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‘ end-point value (E,_q)o so long as this solution satisfies

(KT-3) and (KT-4); that is, until a = @', where
. A o — o
a' = Max {@: Q@ <a<1, 8 (x (@) >0, Vv 1 ¢8°,
o
uis (o) >0, Yies® on [«°, a'}) .

If a' =1, terminate. Otherwise put (_:5,3)0 =

5@, o*°(@
x" (@'), v’ (a')) and go to Step 3.

Step 3: Solve equations (=S)a by any convenient method as
@ increases above Q' for the unique continuous
solution (x°(a), wS(a); satisfying the left end-point

value (x,u)® for different sets § which satisfy

3 (8.1) {i e M: ufo(a') > O](;S E(i € M: gi(fso(a')) = 0}

1 1]
until for some S°, (Es (a), ES (@)) satisfies (KT-3)
and (KT-4) on [a',a'+e] for some e > o. Put

LU JERETR T . & Step 2.

The next subsection is devoted to the development of the theo-
retical results necessary for Justifying this conceptual algorithm.

Complete justification requires proof of the following

Theorem (Basic):
Assume that Conditions 1 through 4 hold. Then the following

assertions regarding the Basic Conceptual Algorithm hold:
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(iii)

(i) Step 2 is well-defined.

o o]
(ii) At each execution of Step 2, (58 (@), gs (@) = (x*(a),

u*(@)) on [a%a’].

Step 5 is well-defined.

(iv) Step 3 will be executed only a finite number of times

before termination obtains.

2.5 Theoretical Development

(i)

(i1)

Proof':

of (Rx)

f(x;a)

Contimuity plays a crucial role in Parametric programming.

Theorem 1 (Contimuity):

Assume that Conditions 1 through 3 hold. Then (Fx) has

a unique optimal solution x*(a), and x*(a) 1is continuous

on some open interval containing [0,1].

Assume that Conditions 1 through 4 hold. Then (Rx) has

unique dual variables u')i“(a) (i =1,...,m) such that

(x*(a), u*(a)) satisfies the Kuhn-Tucker Conditions (5)
through (7), and u*(a)

containing [0,1].

First we prove (i). The existence of an optimal solution

for any fixed value of « follows from the fact that

is a continuous function of X on the compact set X. The

uniqueness of the optimal solution follows by A.2 from the fact that
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f(g;a) is strictly concave in X over the convex set X for each
fixed value of a in some open interval CE containing ([0,1]. Derote
the unique opti@ solution by x*(a).

To demonstrate that x*(a) is contimious on c/ , Suppose
the contrary. Then there exists a sequence < a¥>-a with av,
ae bl such that <§*(av) > # x*(a). Hence there is an (open)
neighdorhood K(x*(@)) of x*(@) such that x*(a”) £ N(x*(a))
infinitely often, and by taking a subsequence, if necessary, we may
assume that this holds for all wv. Since<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>